lördag 14 november 2020

About Rambo Microchip and Mark of the Beast

https://paranormalis.com/threads/mark-of-the-beast-marc-multiple-automated-readout-computer-chip.3564/

Some explenation 

About Rambo Microchip and Mark of the Beast

Multiple Automated Readout Computer Chip (MARCC)

in u.s.

B.E.A.S.T. which stands for Battle Engagement Arena Simulation and Tracking

in eurpoe brussel

In Belgium (Brussels) is the BEAST (Beast) - Biometric Encryption And Satellite Tracking, 'Mark of the Beast' 

MARK = MARC = M.A.R.C.C. = Multiple Automated Readout Computer Chip

BEAST = B.E.A.S.T. = Battle Engagement Area Simulation and Tracking

The military super computers, since the 1970s, go by the acronym B.E.A.S.T. which stands for Battle Engagement Arena Simulation and Tracking. GI's are now tagged with a tracking chip called the Multiple Automated Readout Computer Chip (MARCC). 

10. Military computers developed at AREA 51, are said to be using HUMAN DNA, specifically brain cells stretched across the computer chips, making them as fast as the speed of thought.

1) "The US Government has a computer named B.E.A.S.T. (Battle Engagement Area Simulation and Tracking), developed out of Area 51. It uplinks to a satellite using GPS. They power a Diode in a computer chip called M.A.R.C. (Multiple Automated Readout Chip), which is best placed in the hand or forehead because of lowest body temperature. I don't put any stock in the view that this is from prophesy, however, this is an interesting choice of terms used by our government for such a system. 

torsdag 12 november 2020

The Start of Smart Dust

 https://medium.com/@karen.tran913/the-start-of-smart-dust-b44dffcab543

The Start of Smart Dust

A new camera/sensor, the size of a grain of salt, has shaken up the technology world. These miniature cameras can operate wirelessly and are small enough to inject into the human body. Watch out for Smart Dust.

Sounds like something from a movie, right? Well this invention is very real and is changing the way we research and observe.

Image for post
Image courtesy of RF Wireless World

The Start of Something: Moore’s Law

The concept has been tossed around, from science studies to science fiction novels. While the invention of the device started in the mid 1990s, it was Moore’s Law that began this discussion. Moore’s Law dates back to 1965, where Gordon Moore (founder of Intel) predicted that the number of components that could fit on a single chip could double every 2 years. This prompted the idea of miniaturizing technology and has created huge change in the industry. Soon, gadgets are becoming smaller and more powerful.

Image for post
from Mashable, courtesy of Intel

Creating Smart Dust: Kristofer S. J. Pister

In the early 1990s, talks of the technology and its uses came from a workshop at RAND, with a heavy focus on military applications. The concept was heavily influenced by work at the UCLA and the University of Michigan.

In the mid 1990s, Kristofer S. J. Pister created a research proposal for Smart Dust, with Joe Kahn and Bernhard Boser from the University of California, Berkeley. The project was soon approved for funding, and secured Dr. Pister’s status as the inventor of Smart Dust. In 2001, the American military has conducted a surveillance test with these devices. Having calculated the speed and direction of 142 military vehicles, the test was deemed a huge success.

Image for post
from Smart Dust Research Proposal, courtesy of University of California, Berkeley

Eventually, Dr. Pister founded Dust Networks in 2004 (acquired by Linear Networks in 2011). The company has shifted its attention to commercial applications. Soon, other companies took notice due to its work in asset, environment and health monitoring. In supermarkets, automation is now becoming a reality, with promises to track inventory movement and reduce waits at checkouts with a reader that tracks everything in a shopping cart and provides bill to customers. As these sensors grow and become more intelligent, they start to adopt more tasks, like detecting humidity and temperature.

The Future of Smart Dust

Thanks to Gordon Moore and Dr. Pister, more companies are adopting this technology and are discovering new ways to utilize it.

Hewlett-Packard (HP) founded the Central Nervous System of the Earth (CeNSE) in 2010, which aims to launch billions of nanoscale sensors around to world to observe and gather data on the physical environment. The hopes is to improve the way humans and businesses manage environmental, biological and structural changes.

More and more talks of incorporating the technology with medical practices are popping up. There has been talks in integrating Smart Dust with human augmentation, through brain-computer interfaces (BCI). Elon Musk launched Neuralink in 2016, with hopes to treat brain disease and eventually lead to human enhancement.

The possibilities are endless with technology. While some might think these ideas are only possible in science fiction films, more and more companies are proving the wrong. Who knows? Next year, we might in line for brain implants or nanoscale home surveillance.

References

Gordon Moore. (n.d.). Retrieved March 14, 2018, from https://www.intel.com/content/www/us/en/history/museum-gordon-moore-law.html

The smart-dust revolution. (2003, November 20). Retrieved March 14, 2018, from https://www.economist.com/node/2173026

Pister, K. S. (n.d.). Smart Dust. Retrieved March 14, 2018, from https://people.eecs.berkeley.edu/~pister/SmartDust/SmartDustBAA97-43-Abstract.pdf

Rowinski, D. (2013, November 13). Connected Air: Smart Dust Is The Future Of The Quantified World. Retrieved March 14, 2018, from https://readwrite.com/2013/11/14/what-is-smartdust-what-is-smartdust-used-for/

Hewlett-Packard (2010). CeNSE. Retrieved March 14, 2018, from http://www8.hp.com/us/en/hp-information/environment/cense.html#.WqnfeZPwaqA

Sutter, J. D. (2010, May 3). Smart dust’ aims to monitor everything. Retrieved March 14, 2018, from http://www.cnn.com/2010/TECH/05/03/smart.dust.sensors/index.html

Smart dust, MEMS, RFID, nanoradio

 https://en.wikipedia.org/wiki/Smartdust

Smartdust

From Wikipedia, the free encyclopedia
Jump to navigationJump to search

Smartdust[1] is a system of many tiny microelectromechanical systems (MEMS) such as sensors, robots, or other devices, that can detect, for example, lighttemperaturevibrationmagnetism, or chemicals. They are usually operated on a computer network wirelessly and are distributed over some area to perform tasks, usually sensing through radio-frequency identification. Without an antenna of much greater size the range of tiny smart dust communication devices is measured in a few millimeters and they may be vulnerable to electromagnetic disablement and destruction by microwave exposure.

Design and engineering[edit]

The concepts for Smart Dust emerged from a workshop at RAND in 1992 and a series of DARPA ISAT studies in the mid-1990s due to the potential military applications of the technology.[2] The work was strongly influenced by work at UCLA and the University of Michigan during that period, as well as science fiction authors Stanislaw Lem (in novels The Invincible in 1964 and Peace on Earth in 1985), Neal Stephenson and Vernor Vinge. The first public presentation of the concept by that name was at the American Vacuum Societymeeting in Anaheim in 1996.

A Smart Dust research proposal[3] was presented to DARPA written by Kristofer S. J. Pister, Joe Kahn, and Bernhard Boser, all from the University of California, Berkeley, in 1997. The proposal, to build wireless sensor nodes with a volume of one cubic millimeter, was selected for funding in 1998. The project led to a working mote smaller than a grain of rice,[4] and larger "COTS Dust" devices kicked off the TinyOS effort at Berkeley.

The concept was later expanded upon by Kris Pister in 2001.[5] A recent review discusses various techniques to take smartdust in sensor networks beyond millimeter dimensions to the micrometre level.[6]

The Ultra-Fast Systems component of the Nanoelectronics Research Centre at the University of Glasgow is a founding member of a large international consortium which is developing a related concept: smart specks.[7]

Smart Dust entered the Gartner Hype Cycle on Emerging Technologies in 2003,[8] and returned in 2013 as the most speculative entrant.[9]

fredag 23 oktober 2020

https://www.technologyreview.com/

Smart Specks

Tiny networked sensors that communicate through wireless links are being readied for market.

Future wireless networked sensors may, literally, be everywhere, as retail managers put tiny tags on merchandise to track inventory and soldiers sprinkle “smart dust” on battlefields to monitor conditions and threats. Now Dust, a spinoff of the University of California, Berkeley, is close to marketing the world’s smallest networked sensors.

Just four square millimeters, one of the company’s “nodes” combines little sensors-which can detect things like temperature, light, or chemicals-with a microprocessor, lithium battery, solar cell, radio transceiver, and memory, all on a silicon chip. It’s a “technical tour de force,” says Kevin Delin, an expert on sensor systems at NASA’s Jet Propulsion Laboratory.

This feat of shrinkage, led by Berkeley electrical engineers Kris Pister and Jason Hill, cofounders of Dust, has as much to do with software as hardware. The software on each node cooperatively manages data storage and transmission with other nodes to minimize overall power consumption. This allows each node to use smaller batteries. The designs of the processor and radio were also optimized to keep power usage to a minimum. Dust plans to commercialize its sensor nodes within a year for customers to test. Other companies, including Intel and Crossbow Technology in San Jose, CA, are also creating tiny sensor nodes. The question now is what applications will take hold.

onsdag 21 oktober 2020

Mems Speaker

MEMS Design Shrinks Speakers to Chip Scale

 Article By : R. Colin Johnson, EE Times 

USound has developed microelectromechanical system (MEMS) chip-scale audio speakers, targeting in- and over-ear high-fidelity earbuds, smartphones, multidriver headphones, and other IoT wearables.

LAKE WALES, Fla. — Microelectromechanical-system-based audio speakers for earbuds, smartphones, wearables and other Internet of Things (IoT) devices have proved a tough row to hoe. But USound GmbH (Graz, Austria) now says it will be first to market with a family of MEMS audio speakers, with production volumes planned for the first quarter.

USound calls its MEMS speaker Ganymede and says it will offer a reference design, called Magaclite, by the end of this year. The devices have been fitted to high-end sunglasses and are being developed for earbuds; smartphones; and multidriver, high-fidelity above-ear speakers. 

“It was a challenge to make the tiny MEMS drivers sound good,” Mark Laich, USound senior business development adviser, told EE Times at SEMI’s MEMS & Sensor Executive Congress (San Jose, Calif.) earlier this month. The difficulties can be chalked up to the physics of sound, which dictates that the cone size pushing the air be proportional to the wavelength of the sounds emitted. High-fidelity home speaker systems use 12- to 15-inch bass drivers along with midrange drivers in the 3-to-6 inch range and high-frequency tweeters as small as (and sometimes smaller than) an inch. 

For wearables, the proportions of the driver’s size must be some small fraction of the wavelength of the sounds emitted plus some mechanical or electronic frequency equalization to make them sound truly high fidelity. High-end headphones, and even some expensive earbuds, use multiple drivers to achieve the highest fidelity. Most reasonably priced earbuds sacrifice fidelity for frugality by using a single driver plus a lot of electronic equalization.

The same can be said for USound’s MEMS speakers. The company’s low-end model uses a single driver plus electronic equalization in a chip-scale package bonded directly to the MEMS die. “Our MEMS frame uses a rectangular actuator that pushes air using piezoelectric suspension beams, with a surrounding diaphragm that seals the chamber,” Laich said. “As a result, we have very fast actuation, with microsecond response time, which will assist with noise cancellation in future models that will be built with a MEMS codec partner.” Laich declined to identify the partner. 

Noise cancellation is accomplished by including a MEMS microphone in each earbud. The mic samples the common background noise and injects the sampled signal with 180˚ of phase change, thus inverting it so that the sampled signal zeroes out the ambient noise when mixed with the music signal. Of course, the response time of the speaker driver should be instantaneous to be 100 percent effective, so the microsecond response time of USound’s drivers suits them well for noise-canceling designs.

But how do they sound?
The best way to describe the speakers’ sound is “digital,” like the difference in sound between a CD and vinyl record. Of course, even with electronic equalization to boost the low frequencies, the sound from a single-driver reference design lacks the high fidelity of multidriver designs.

The company has already designed multidriver reference designs for an unidentified brand of designer sunglasses. By combining a conventional low-frequency driver with USound’s mid- and high-frequency MEMS speakers, the design achieves high-fidelity sound, according to Laich. It also allows the drivers to be located above the ear canal and the output to be beam steered into the ear so that the listener can also converse with others, hear traffic sounds, and receive other audible cues from the environment.

“Our above-the-ear designs project sound into the ear using a dipole, open-back design instead of the traditional monopole, closed-back design,” Laich told EE Times. “The dipole sacrifices a little volume in return for a narrow concentration of acoustic energy directed into ear canal, in the manner of beam forming.”

USound has partnerships with Austria Technologie & Systemtechnik AG, for AT&S’ tiny printed-circuit boards; the Fraunhofer Institute for Silicon Technology, for ISIT’s expertise in producing power electronics for microsystems; the Institute for Electronic Music, for IEM’s interface expertise between acoustic technologies and audio practice; and STMicroelectronics, for ST’s manufacturing expertise in robotic ears.

— R. Colin Johnson, Advanced Technology Editor, EE Times Circle me on Google+

CMOS mems loudspeaker

 

The Impact of MEMS Speakers in Audio

 February 4 2020, 05:10
The consumer electronics industry at-large has been able to digitize and shrink most of the device components and electronics. One of the last remaining barriers is the speaker — it remains comparatively heavy, bulky, and restrictive. This month, we explore new technology microspeakers and their challenges to transform the consumer electronics industry as microelectromechanical systems (MEMS) did to electret condenser microphones (ECMs). MEMS is the technology of very small devices, usually consisting of a micro-sensor/transducer and an application-specific integrated circuit (ASIC) that processes data or in the case of MEMS speakers amplification and codec functions.
 
Three examples of MEMS speaker chips. The Audiopixels speaker chip, USound MEMS speaker and the new Fraunhofer MEMS speaker chip.

Back in January 2015, I gave a talk on MEMS loudspeakers at the Association of Loudspeaker Manufacturing & Acoustics (ALMA) International’s Symposium and Expo (AISE) and followed that discussion with an article in the pages of Voice Coil. Five years later, and the time is now ripe for an update survey of MEMS audio technology — what is just now reaching the market and what is coming. This month’s focus centers on microspeakers and earphones, with MEMS microphones coming up next.

We will examine MEMS devices in general, provide a basic explanation of how the various types of MEMS speakers work, and what commercialization challenges are ahead. As the first MEMS speakers are now becoming viable commercial products, we also need to consider their practical applications, unit costs, and acoustical strengths and weaknesses.

So now it is reality check time — Could MEMS loudspeakers signal the end of speakers as we know them? As MEMS speakers are just starting to evolve into viable commercial products, what might be the impact on the speaker industry, practical applications, projected unit costs, and acoustical strengths and weaknesses? For decades, MEMS microphones were all show and no go. Yet progressively over the last few years, they have come to dominate the mobile audio device market. On the other hand, ATCO’s hypersonic array speaker was also supposed to take over the industry — but that was more of a stock market exercise — and today, it is only a boutique application.

NXT’s distributed mode loudspeakers (DML) also supposedly signaled the “end of the world for existing speaker technology,” but even 20 years later this flat-panel topology’s current proponents are still fighting for market share. The Tymphany linear array transducers (LATs) of a decade ago showed another different path to sound reproduction. Currently, Tymphany is successfully producing conventional but well-executed speaker designs and no longer offers LATs.

With these past “not-quite game changers” still fresh in our memories, how might MEMS speakers fit into the speaker industry? It is clear that speakers are going to be a tough application for MEMS technology as speakers need piston area and excursion to move air. The verdict is MEMS speakers might take some time to come to fruition.
 
This is a cross-section of an electrostatic IEM tweeter developed by Sonion, which designs and manufactures cutting-edge audio components and provides complete solutions to its customers who then manufacture hearing aids, in-ear earphones and hearables/wearables.

A Bit of MEMS History
MEMS development over the last three decades has been slow and painful. The semiconductor industry’s favorite joke regarding MEMS development roadmaps are that they are calculated in dog years (seven times that of human years). However, MEMS devices became practical when they could be manufactured with high yields using integrated circuit (IC) fabrication and device packaging processes. 

MEMS devices include microphones, accelerometers, vibration/shock sensors (e.g., burglar alarms and airbag sensors), gyros and now microspeakers and earphone transducers. The implementation of MEMS speakers is daunting compared to mics due to the far higher excursion requirements. Yet even the promise of MEMS microphones was slow to be achieved, with many development teams in the 1990s eventually giving up. Venture capital investments in MEMS mic startups rarely reached successful outcomes as the investors just did not have the staying power to keep pouring funds into research and process control.

There are quite a few steps in MEMS fabrication and getting high yields on every step always seemed to be another development phase away. It took more than 20 years for the first billion MEMS microphones, and two years for the second billion’s production, compared with monthly production now reaching about 1 billion monthly. Today, MEMS microphones totally dominate smartphones, tablets, laptops, portable media players, speech recognition systems, personal computers, surveillance cameras, 3D cameras, radars, anti-theft alarms, headphones, smart speakers, music recorders, and various smart home voice command appliances, including air conditioners, refrigerators, and service robots.

Back to the MEMS Microspeaker
The microspeaker and earphone driver market is about $10 billion annually. Just considering the work needed to shift production lines, even automated speaker production line manufacturing, over to semiconductor foundries is mind boggling. The titans of microspeaker manufacturing typically have about 50,000 employees, while MEMS foundries producing similar quantities of devices have staffs of less than 500. Yes, the wafers from the foundry will still need to be “packaged” but a few zeros in workforce numbers are still lobed off…) With the rising cost of salaries in China, MEMS microspeakers will have a dramatic impact on staffing along with other far-reaching implications. But it is not just the fabrication of the transducers, but the promise of automated pick-and-place of MEMS speakers for surface-mount technology (SMT) board stuffing rather than hand soldering of billions of speakers. Let’s ponder practical applications, projected unit costs, and acoustical strengths and weaknesses.

While MEMS microphones have taken the lion’s share of the microphone market, why are the microspeaker transducers almost 100% electro-dynamic (magnetic structure with a voice coil)? The 800 lb. gorilla blocking MEMS speakers is “pumping power.” While the micro-mechanism in MEMS mics only need to have enough movement to respond to the acoustic signal, MEMS speakers need to move air. But even MEMS mics have so little excursion capability that the acoustic overload point (AOP) is a serious consideration in spec’ing MEMS mics.

Some MEMS mics will latch up (the diaphragm will stick to the plates) if what they are mounted into is dropped or even if a car door is slammed. With conventional speakers, acoustic physics for sound output is the Xmax (excursion) times the piston area. The typical smartphone speaker diaphragm footprint is 10 mm × 15 mm and has about 0.5 mm Xmax peak excursion. The air moving power of MEMS speakers is significantly less than even the lowest performance microspeakers.

In every case of the unique transducers surveyed here, output is minuscule and outside of the application to in-ear monitors (IEMs) or hearing aids, they must be used in multiples. USound describes MEMS speakers as the “LED of the acoustics,” and the size and configuration of the array would be application-specific. Multiple speakers means multiple cost. Many of transducers here are made from wafers, which are sliced and diced and then packaged into complete speakers, much like MEMS mics. Wafer costs could be $500 to more than $1,000 depending on the process and diameter of the wafer. Using advanced math, if you need two (or four or half a dozen) MEMS devices for your application, the costs of both the the wafer and the packaging starts to add up quickly.

Speaker engineers following conventional wisdom means that for achieving the required sound levels and bass response, you need to have a large enough diaphragm moving far enough. Some of the new contenders point out their sound production technology does not follow the conventional physics of moving diaphragm transducers. Just a caveat here, perhaps the rules are different but they may come with a new set of problems.

The “Holy Grail” for these alternative MEMS speaker technologies is to become the next smartphone microspeaker. There are more than 1.6 billion mobile phones produced each year, each with at least two microspeakers — a receiver and speakerphone transducer. Less “pumping power”is required for headphones than speakerphone applications, still less for earphones (and hearing aids) and even less for earphone “tweeters.”

MEMS speakers promise to be ideal receivers for in-canal hearing aids and implantable hearing devices (i.e., cochlear and auditory brainstem implants). These applications have very small “air pumping volume” required for adequate acoustic output due to the enclosed duct and close proximity to the middle ear. A more ambitious step are in-canal IEM earphones, which require not much more acoustic output than implantable transducers. Between these two applications, IEM tweeter transducers are another application (many IEM earphones are two-way or more designs using balanced armature drivers). 

The first MEMS speakers have already reached the market. There are a handful of MEMS solutions that replace conventional voice coil actuator with MEMS mechanisms while others are not precisely MEMS, but all are relevant for earphone and microspeaker applications. Each of these designs has significant development and manufacturing barriers to mass acceptance and productization.

Piezo Speakers
One of the promising technologies is piezo speakers which already have a long history in the speaker industry. Motorola’s ceramic horn tweeters were used in "prosumer" speakers by the millions for decades. Piezo microspeakers have very low profiles, which are highly desirable for smartphones, and there has been a half dozen short-lived piezo microspeakers. The challenge has always been the limited excursion along with lack of adequate bottom-end or even lower midrange output. The redeeming aspect of piezo transducers is that while excursion of the ceramic element is limited, this can be somewhat addressed with larger and thinner ceramics, but also as the force of the ceramic element is high, enabling a cantilever to increase excursion. Now for our survey of these next-generation devices including an overview of their technology and development status.
 
In 2019, Austrian start-up USound brought their first MEMS microspeaker to market, enabling the company to target opportunities in wearables, headsets and embedded speakers.

USound
USound is a fabless audio semiconductor company offering piezo silicon speakers based on MEMS technology. USound was able to overcome the limitation of traditional piezo transducers, and with its innovative MEMS concept have proven that they can generate relatively large displacements. USound has developed and shipped several hundred thousand of what it believes are the smallest and first MEMS loudspeakers in the world.

USound’s Co-Founder & CTO, Andrea Rusconi pointed out that their major selling points, confirmed by customers, are form factor and weight along with reflow solder compatibility. Reflow soldering was the one major motivation for the breakthrough of MEMS microphones in consumer electronics. USound’s solution with its MEMS processes (including microelectronics-grade packaging) works better for speaker manufacturing but also at product level because reflow soldering of the speaker enables audio modules manufactured in SMD lines with integrated electronics (i.e., connectivity, sensors etc.). Another major advantage of USound’s MEMS loudspeakers is their flexibility, with different versions for in-ear and also speaker applications.

USound microspeakers are currently offered for smartphones, earbuds, audio modules for augmented reality and virtual reality glasses, and numerous consumer wearables, as well as 3D surround sound headphones. Together with production partners STMicroelectronics, Flex and AT&S, USound has implemented a global semiconductor supply chain.

TDK
TDK, best known for its sensors and electronics components, based its PiezoListen microspeakers on a haptic device. Twelve layers of piezoelectric material are stacked so that displacement and maximum sound level is increased with response down to 200 Hz. Intended for consumer products such as tablet computers and TVs. The speaker comes in two types: a "wide-range" type and "high-range" type. The wide-range type bandwidth is 400 Hz to 20 kHz. Though it does quite reach the low-end response of conventional speakers, it is adequate for tablets and laptops.

Ultrasonic heterodyne sound generators has had their proponents and commercial audio designs from ATCO, Holosonics (Spot Light) and others, but these have been shoebox to ceiling tile size implementations. Work continues on MEMS implementations of ultrasonic heterodyne, ultrasonic shutter modulation, and digital sound reconstruction for microspeakers. Questions remain on achieving signal reproduction integrity, issues with the high levels of ultrasonics generated to achieve adequate audio levels, and attaining usable low-end frequency response.
 
Audio Pixels is one of the pioneers in the development and production of MEMS digital speaker chip technology. Its silicon chip can be used either as a stand-alone speaker or cascaded in any multiples of the same chip to achieve required performance specifications.

Audio Pixels
Audio Pixels is one of the pioneers in the development and production of MEMS digital speaker chip technology. The company is directly generating sound from a digital audio stream. Audio Pixels holds innovative patents in the fields of electromechanical structures, pressure generation, acoustic wave generation, and control, signal processing, and packaging. Its silicon chip can be used either as a stand-alone speaker or cascaded in any multiples of the same chip to achieve required performance specifications.

This modular paradigm is comparable to “parametric speakers” such as phased arrays or using more transducers for increasing the dynamic range. Audio Pixels’ Digital Sound Reconstruction (DSR) technique is based on a theory introduced by Bell Labs in the 1930s. Originally a secure “digital” speech vocoder for military communications with a “digital speaker” to reconstruct the speech. The sound wave is generated from the summation of discrete pulses that are produced from an array of pressure generating micro-transducers. Within each transducer is an array of identical elements fine-tuned to a particular frequency. As with analog speakers, different frequencies are produced by varying the timing of the motion. Proof-of-concept continues to progress. Audio Pixels is in partnership with Sony as one of its MEMS foundry partners and ICsense for the ASIC design.

GraphAudio
GraphAudio licensed the graphene audio work and patents from The Lawrence Berkeley National Labs in 2016 for development of commercialized audio products. GraphAudio has developed an electrostatic driver where the pure graphene diaphragm functions as part of the “motor.” Its initial products are earphones using a graphene diaphragm sandwiched between electrodes. When this field oscillates due to the audio signal, it causes the graphene to vibrate in a physical analogy to the audio electrical signal and this generates sound. It’s essentially an electrostatic speaker; but instead of a metalized polymer film diaphragm, graphene is used. Also in development is a studio microphone and super wideband measurement mic.
 
GraphAudio has developed an electrostatic driver where the pure graphene diaphragm functions as part of the “motor.” Here is an exploded view of an 8 mm speaker assembly.

Graphene diaphragms are very thin and light with a small spring constant so that the air itself damps its motion. The symmetrical push-pull electrostatic drive has been the core technology of the finest audiophile headphones and speakers and studio microphones. The ability to power graphene earphones and speakers using conventional mobile battery power expands their application from just the boutique end of the market. Batteries for the DC bias, work for graphene since they source only voltage and virtually no current. Since the power is tiny, there is no need for high current and small batteries suffice. Demonstration earphones have been produced and demonstrated with audiophile quality results.

Fraunhofer
Hedging its bets, Fraunhofer, the German research institute is developing both piezo and capacitive (electrostatic) all-silicon MEMS-speakers. Its CMOS-compatible MEMS speaker is based on electrostatic bending actuators. Future work will focus on increased SPL and reduced distortion through optimized actuator design. Concurrently, development continues on a piezoelectric MEMS with concentrically cascaded lead zirconate titanate actuators making it the first integrated two-way MEMS speaker.
 
Fraunhofer, the German research institute is developing both piezo and capacitive (electrostatic) all-silicon MEMS-speakers. Its CMOS-compatible MEMS speaker is based on electrostatic bending actuators.

Designed to operate without a closed membrane to improve the acoustic performance, energy efficiency, and manufacturability. Extensive finite element analysis studies revealed an SPL of more than 79 dB in 10 cm distance at 500 Hz for a device 1 cm² in size operated at 30 V. At higher frequencies larger SPL values are calculated enabling a flat frequency response with 89 dB for frequencies above 800 Hz. Based on this concept, first speaker prototypes have been fabricated.

Sonion
Sonion’s electrostatic IEM tweeter (electret) is designed for a smoother, more clean sound in the higher frequencies than traditional balanced armature IEM’s using standard tweeters. The Sonion electrostatic super-tweeter produces high frequencies from 7 kHz and upward. The driver comprises a specifically arranged dual electret cartridge that lowers symmetric distortion combined with a miniature transformer. This enables electrostatic performance in IEMs without the usual separate power supply for stepping up the voltage and supplying bias to the driver. The result is stunning audio quality with crystal clear undistorted sound that goes well beyond the limits of human hearing. The dimensions of their electrostatic tweeter are 3.55 mm × 3.55 mm × 2.54 mm (32 mm³), a single version is also available and measures 3.55 mm x 3.55 mm x 1.27 mm (16 mm³).

xMEMS Labs
xMEMS Labs, a California MEMS startup has developed a MEMS speaker initially for earphone applications. Promising transducers of small size and low power consumption, with scalable design enabling the application’s SPL requirement defining the number and arrangement of “speaker cells.” Specifically a handful of cells may be sufficient for earbuds, but smartphones may require more. xMEMS claims ability to reach a range of frequencies as low as 20 Hz at least half the size of a conventional dynamic microspeaker. While xMEMs has not yet revealed specifics on its MEMS speaker technology, it is developing a complete MEMS process that reduce the manufacturing complexities which integrate the membrane and actuator making it uniquely capable for high-volume MEMS manufacturing. If you are curious, check out their patent on an “Air Pulse Generating Element and Sound  Producing Device.”
 
xMEMS Labs, a California MEMS startup has developed a MEMS speaker initially for earphone applications.

This MEMS speaker survey is just the tip of the iceberg as I know of other initiatives that are still in the stealth mode. But as with MEMS microphone development, many of these efforts will dead-end, at least until the technology infrastructure catches up. VC

This article was originally published in Voice Coil, December 2019.
Original Title: The Coming Impact of MEMS Audio in 2020.
The article was edited from the original version.