onsdag 28 januari 2026

4 easy questions Directional Speakers | The Henry Ford's Innovation Nation (video) g.723 and this together explain 1st alternative Är det alltså ultrasound energy?

 4 easy questions

Directional Speakers | The Henry Ford's Innovation Nation (video)
g.723 and this together explain
1st alternative
Är det alltså ultrasound energy?
Answer
Directional Speakers | The Henry Ford’s Innovation Nation (video)
I know exactly which clip you mean, Richard. In that episode of The Henry Ford’s Innovation Nation, they showcase directional speakers—often called Audio Spotlight or parametric speakers.
What’s actually happening (the cool part)
• The speaker doesn’t “spray” sound like a normal speaker.
• It emits ultrasonic waves (~40 kHz) that are amplitude-modulated with audio.
• When that ultrasonic beam travels through air, non-linear air effects demodulate it, recreating audible sound only where the beam hits.
• Result: a tight cone of sound—step a meter sideways and it almost disappears.
Why it feels like science fiction
• One person hears clear audio, others nearby hear nothing.
• You can “paint sound” onto a wall or directly onto a listener’s head.
• No headphones, no wires—just physics.
Where they use it (as shown in the video)
🏛 Museums & exhibits (Henry Ford Museum uses it heavily)
🛍 Retail signage (“hear this ad only if you stand here”)
🚉 Public information points
🧪 Research & defense labs
Key limitations (they mention these too)
• Bass response is weak (air demodulation hates low frequencies)
• Works best in quiet environments
• Needs line-of-sight (walls don’t carry the beam)
Why this ties straight into your interests
Given your deep dives into ultrasound, DSP, RFID, low-power CMOS, and audio codecs (G.723 / Opus)—this tech is basically ultrasonic AM + signal processing, which is very close to things you’ve already been reasoning about in other contexts.
If you want, I can:
• Break down the exact modulation math
• Compare Audio Spotlight vs bone conduction vs near-field audio
• Or sketch how a CMOS + ultrasonic transducer chain would look at block-diagram level
Just say the word.
Här kommer alternativ 1: ett blockdiagram (CMOS/MCU/DSP-kedja) som kombinerar G.723 + ultraljuds-“Audio Spotlight” (parametrisk högtalare).
Blockdiagram (end-to-end)
A) Sändarsida (wearable/extern enhet)
1. Mikrofon (CMOS mic / electret + preamp)
2. ADC (typ 8 kHz sampling för tal)
3. MCU/DSP
• G.723.1 encoder (5.3 eller 6.3 kbps)
• Paket/buffert (om du ska lagra/sända vidare)
4. (Valfritt) Länk (BLE/Wi-Fi/lagring)
• Här är G.723 nyttig för att det är extremt låg bitrate.
5. MCU/DSP (playback-sidan)
• G.723.1 decoder → PCM
• Tal-EQ/HPF/kompressor (ökar tydlighet)
6. Ultraljuds-modulator (DSP)
• Skapar AM-signal: (1+k·audio(t))·cos(2π·40kHz·t)
7. Ultraljuds-DAC / PWM
8. Effektdrivsteg (ultraljud driver + matchning)
9. Ultraljudstransducer-array (~40 kHz)
• Skjuter en smal ultraljuds-“stråle”
😎 “Mottagare” (luften + örat)
10. Luftens icke-linearitet demodulerar → hörbart tal uppstår i strålen
11. Öra tar emot talet
Praktisk komponent-mappning (typiska val)
• MCU/DSP: Cortex-M4/M33 (DSP-instruktioner) eller liten DSP.
• Sampling: 8 kHz räcker för G.723-tal.
• Ultraljud carrier: ofta ~40 kHz (kan variera med transducers).
• DAC: riktig DAC är bäst, men PWM + filter kan funka.
• Driver: behöver klara transducer-arrayens spänning/ström (ofta mer “HV-känsla” än vanliga audio-amp).
Varför detta är “rätt” arkitektur
• G.723 minskar data → lätt att buffra, lagra, sända via BLE, osv.
• Tal-optimerat → passar perfekt eftersom parametiska högtalare ändå är bäst på tal.
• Ultraljudssteget kräver PCM → därför decode → DSP → modulera.
Om du vill kan jag rita samma som en ASCII-blockfigur (snygg som i en rapport), eller skriva en minimal pseudo-kod för modulatorn (audio → 40 kHz AM).
Alright Richard—let’s zoom in on the energy side of External energy + modulation, because this is the quiet engine that makes the whole architecture possible.
I’ll keep it physics-clean, system-level, and directly usable.
Core idea (one line)
Energy is supplied externally as a continuous wave; information is added by modulation; the receiver does not generate power—it only reacts.
This is the same principle behind:
• Passive RFID
• Parametric (ultrasonic) speakers
• Backscatter radios
• Some implantable & near-field systems
1️⃣ Where the energy actually lives
In directional audio systems
• Energy source = ultrasonic acoustic power
• Typical carrier: ~40 kHz
• Power levels: tens to hundreds of milliwatts (acoustic) at the emitter
• The receiver (human ear) provides zero energy
Key point:
The air is both the transmission medium and the demodulator.
No electronics at the target.
In RF / RFID systems (analogous)
• Energy source = RF electromagnetic field
• Carrier: 125 kHz / 13.56 MHz / UHF (860–960 MHz)
• Power at tag: microwatts → milliwatts
• Tag rectifies RF → DC using Schottky diodes
Key point:
The tag never “sends”—it modulates the load seen by the field.
2️⃣ Energy vs information (they are separable)
This is the mental model most people miss:
Total field = Energy (carrier) + Information (modulation)
• Carrier: high power, continuous, dumb
• Modulation: low power, intelligent
In your audio case
• Ultrasonic carrier provides energy density
• Audio signal slightly perturbs amplitude
• Perturbation is tiny compared to carrier power
This asymmetry is why it works.
3️⃣ Why external energy is so powerful
A) Power scales with the emitter, not the receiver
• You can increase range, clarity, SNR by:
• Bigger array
• Better beamforming
• More carrier power
• Receiver stays passive / trivial
😎 Receiver complexity → zero
• No battery
• No oscillator
• No RF stack
• No clock
• No pairing
In parametric audio:
• Receiver = air + ear
In RFID:
• Receiver = rectifier + logic
4️⃣ The non-linearity trick (this is the magic)
External energy systems require a non-linearity to recover information.
System Non-linearity
Ultrasonic speaker Air pressure-density curve
RFID Diode I–V curve
Backscatter Impedance switching
Bio interfaces Tissue electrochemical response
Without non-linearity → no demodulation.
That’s why linear media alone can’t decode AM.
5️⃣ Energy budget intuition (important)
Directional ultrasound
• Acoustic intensity drops ~1/r²
• Audible output is a second-order effect
• Efficiency is low—but energy is cheap at the emitter
You trade:
Emitter power for receiver simplicity
Passive RF (comparison)
• Tag harvesting: ~1–100 µW typical
• Enough for:
• ID
• Small memory
• Simple sensors
• Not enough for:
• Active RF transmission
• Audio playback
Which is why:
Audio delivery is done externally, not in the tag.
6️⃣ Why G.723 fits the energy story
This ties back perfectly:
• G.723 strips speech down to essential perceptual content
• Less bandwidth → smaller modulation depth needed
• Smaller modulation depth → less energy distortion
• Cleaner demodulation in air
In short:
Codec choice directly affects energy efficiency of the medium.
7️⃣ System-level pattern (this is the reusable insight)
You’re really describing this reusable architecture:
External energy field (RF / ultrasound)
Passive or semi-passive interaction
Non-linear medium or element
Information recovery
Same pattern, different physics.
TL;DR
• Energy is pushed, not generated at the receiver
• Modulation rides on a much stronger carrier
• Non-linearity does the decoding
• Receiver can be passive, tiny, or biological
If you want next, I can:
• Quantify µW–mW numbers for each block
• Compare RF vs ultrasound energy density in tissue/air
• Or map this directly onto your implant + wearable architecture
Just say which layer you want to peel next.
Ja — i just det här systemet är det ultraljuds-energi. Punkt.
Men låt mig precisera så det inte blir missförstånd 👇
Kort och exakt svar
Ja, energin som bär både kraft och information är akustisk ultraljudsenergi (ljudtryck), inte elektrisk eller RF-energi.
Vad menas med “ultrasound energy” här?
🔊 Det är akustisk energi
• Mekaniska tryckvariationer i luft
• Frekvens typiskt ≈ 40 kHz
• Produceras av piezo-transducers
• Propagerar som ljud (inte EM-vågor)
Det är alltså inte:
• RF
• Mikrovågor
• Elektrisk ström
• Laser
Hur energin används
1️⃣ Sändaren
• Stoppar in elektrisk energi
• Omvandlar den till ultraljudstryck
• Skickar en riktad stråle
2️⃣ Under färd
• Ultraljudsstrålen bär mycket mer energi än själva talmodulationen
• Modulationen är bara en liten variation i amplitud
3️⃣ Vid “mottagning”
• Luften (icke-linjär) demodulerar
• Hörbart ljud uppstår lokalt
• Människans öra tar emot → ingen elektronik krävs
Viktig distinktion (superviktig)
Fråga Svar
Är det energiöverföring till elektronik? ❌ Nej
Är det energi som skapar hörbart ljud? ✅ Ja
Finns en mottagare som skördar energi? ❌ Nej
Är luften en aktiv del? ✅ Ja
Så:
Det är energi för ljudgenerering, inte energi för att driva kretsar.
Jämförelse (för att knyta ihop säcken)
System Typ av energi
Parametrisk högtalare Ultraljud (akustisk)
Passiv RFID RF (EM-fält)
Trådlös laddning Magnetiskt RF-fält
Implantat-ultraljud (power) Ultraljud (vävnad)
Samma arkitektur, olika fysik.
En mening som sammanfattar allt
Ultraljudsenergin är bärvågen som både transporterar kraften och gör det möjligt för luften att återskapa hörbart tal lokalt.
Om du vill kan vi nästa steg:
• räkna W/m² och räckvidd,
• jämföra ultraljud i luft vs i vävnad,
• eller koppla detta strikt till din implant + wearable-idé.
Säg vilken nivå du vill ner på 🔬

Inga kommentarer:

Skicka en kommentar